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 The small-signal analysis of power converters reveals the presence of poles and zeros in the transfer 
functions of interest, e.g. the control to the output variable. The zeros occur in the numerator of the expression 
whereas the poles are located in the denominator. The stability analysis of the transfer function consists in 
looking at the position these poles and zeros occupy in the s-plane. For a stable converter, one condition is that 
both the zeros and the poles reside in the left half portion of the plane: we are talking about negative roots. For a 
pole, a position in the left plane implies an exponentially decaying temporal response, hence asymptotically 
stable. To the opposite, when placed on the right side in the s-plane, a step response will lead to a diverging 
response as the associated exponential term exhibits a positive exponent: this is a positive root. For some 
converter architectures, a zero can sometimes be the positive root to the numerator of the control-to-output 
transfer function. How can this happen and what are the consequences of such a positive zero also called a 
Right−Half-Plane Zero (RHPZ), this is the object of the present paper. 
 
A two-step conversion process 
 
 Figure 1 represents a classical boost converter where two switches appear. A power switch SW, 
usually a MOSFET, and a diode D, sometimes called a catch diode. In the Continuous Conduction Mode of 
operation (CCM), the inductor current IL flows in the power switch SW during the on time or DTsw. During the 
off time, or (1-D)Tsw, the power switch is open and the inductor current goes to the output diode, further feeding 
an output network made of the capacitor and the load. Regardless of the control method, voltage or current-
mode, this configuration assumes that energy is first stored in the inductor during the on time and then 
transferred to the output during the off time.  
 In Figure 2 appears an equivalent representation of the boost converter where the switch/diode 
network has been replaced by a single pole double throw switch which alternatively routes the inductor current 
in the two different branches: the power switch or the output diode. If a designer would observe the currents 
circulating in the output diode, he would see Figure 3 typical waveforms. Our boost converter is designed to 
deliver power to a given load. The variable of interest, in our case, is thus the available output current Iout. This 
current is actually made of a dc portion on which is superimposed a switching ripple. In theory, the ripple goes 
into the capacitor and the dc current circulates in the load. The dc current delivered by the boost converter is 
nothing else than the diode average current Id. Mathematically, this current can be expressed by: 
 
  ( )1out d LI I I D= = −  (1) 
 
where Id is the average diode current also equal to the dc output current Iout and D is the duty cycle. 
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Figure 1: a boost converter features two switches 
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Figure 2: a single pole double throw switch represents the combined operations of the diode and the power 
switch. 

 
The diode current 
 
 In Figure 3, on the left side, we can see the current in the diode jumping to the peak inductor current 
as soon as the switch opens. Then, the current decays with a slope imposed by the voltage across the inductor 
during the off time. The diode average current in the left picture is Id0 and obeys Eq. (1). Now, on the right 
picture, the duty cycle has slightly increased. The inductor current peaks a little higher but, given the reduction 
of the ( )1 D− term in Eq. (1) due to the increase of D, the average current Id1 is lower than before. 
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Figure 3: the current observed in the output diode with two different duty cycles. 

 
 As one can see from Eq. (1), if D suddenly increases to correct a perturbation, then, to let Iout follow-
up, we need an immediate increase in the inductor current IL as well. The problem relates to the average inductor 

current which is limited in slew rate. If the inductor average current change LdI
dt

is slower than the duty cycle 

change 
dD
dt

, then the output current Iout goes down immediately until the inductor current builds-up and 

eventually catches-up with the set point imposed by the loop. However, if Iout goes down, so does Vout, 
immediately sensed by the feedback loop. The controller increases the duty cycle and sees a decrease in the 



voltage, the reverse of what the loop polarity is supposed to be: this is the physical effect of the right-half-plane 
zero located in the control-to-output transfer function. 
 What is the pace at which the average inductor current can change? Lenz’s law instructs us that the 
instantaneous current change rate in an inductor obeys the following formula: 
 

  
( ) ( )L LdI t V t

dt L
=   (2)  

 
On average, it simply follows: 
 

  L LdI V
dt L

=   (3)  

 
where IL and VL respectively represent the average inductor current and voltage values. The exercise now 
consists in calculating the average value across our inductor. By considering the weighted period of time during 
which Vin or Vout−Vin are applied across L, we have: 
 
  ( )( ) ( )1 1L in out in out inV V D V V D V D V= − − − = − +  (4) 
 
Let’s assume the following boost operating parameters: 
 
Vin = 10 V 
Vout = 24 V 
D0 = 0.583 
Rload = 240 Ω 
L = 1 mH 
 
With a 58.3% duty cycle, the converter delivers 24 V. Now suppose that the duty cycle jumps to D1 = 59% or a 
difference of 0.7%. What is the inductor average current slope in this case? Considering a large output capacitor, 
the output voltage stays constant during the duty cycle change. Applying Eq. (4) gives a transient average 
inductor voltage of: 
 
  ( )1 1 24 (0.59 1) 10 160L out inV V D V mV= − + = × − + =  (5) 
 
Back to Eq. (3), the maximum average current slope  is therefore: 
 

  
160 160

1
L LdI V m µA µs

dt L m
= = =   (6) 

 
a rather low value. 
 
 When the duty cycle changes from 58.3% to 59%, it implies an output voltage change of: 

 

  
10 24.33

1 1 0.589
in

out
VV V

D
= = =

− −
  (7) 

 
With a constant 240-Ω load, the output current will increase to: 
 

  
24.33 101.37
240

out
out

load

VI mA
R

= = =   (8) 

 
Brought back to the inductor change, the output current variation given by Eq. (8) must be accompanied by an 
average inductor current variation of: 
 



( ) ( ) ( ) ( )2 2 2 2
1 0

1 1 10 1 1 246.65 239.8 6.85
2401 1 1 0.589 1 0.583

in
L

load

VI mA
R D D

⎡ ⎤ ⎡ ⎤
∆ = − = − = − =⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
   (9) 
 
Given an average inductor slope 160 µA/µs, this current variation will only be possible within a timeframe of: 
 

  
6.85 42.8
160

mdt µs
u

= =   (10) 

 
If the duty cycle is swept from 58.3% to 59% in much less time than 42.8 µs, the inductor current will not build-
up at a sufficient pace to make the output current rise at the same speed. As an immediate result, the output 
current drops rather than increases. On the contrary, if the duty cycle sweep is slow enough, the current can 
increase in the inductor at sufficient speed to compensate the reduction in (1−D): the output voltage goes up. 
This is the reason why a reduction in the available loop bandwidth naturally limits the duty cycle slew rate and 
gives time for the inductor current to build up. 
 
An average model to visualize the effects 
 
 Figure 4 depicts a voltage mode boost converter modelled using the newly derived auto-toggling 
model Ref. [1] based on the PWM switch model. In this figure, we will sweep the duty cycle from 58.3% to 59% 
at different speeds and then observe the pertinent waveforms: 
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Figure 4: a boost converter using an average model is a good tool to observe the RHPZ effects. 

 
The results appear in Figure 5 and Figure 6. In Figure 5, the duty-cycle is slowly swept in 200 µs and one can 
see that the output voltage rises up without any negative portion: the inductor current can keep up with the duty 
cycle change and the converter responds, in time, to the step. The situation differs in Figure 6 where the sweep 
time is reduced to 10 µs. In this particular case, the inductor average current cannot positively answer the 
required change and the output current drops. The same occurs in the output voltage and, if a voltage loop would 
be involved, an oscillation would take place. 
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Figure 5: when the duty cycle is slowly swept, the output voltage stays positive and the control law works in the 
right direction. 
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Figure 6: if the duty cycle is quickly swept, the average inductor current limits the output current slew rate and 
the output voltage drops until the current builds-up. During a short time, the control law is reversed! 

 
 Based on the above observations, we can state that: 



 
• In CCM, the average inductor current is limited in slew rate by the available voltage during the duty 

cycle change. A large inductor worsens the situation, a small inductor improves it. 
• If the duty cycle change imposed by the feedback loop tries to set an output current variation beyond 

the inductor slew rate capabilities, the output voltage drops and oscillations occurs. On the contrary, 
slower duty cycle changes will correctly propagate to the output without endangering the loop stability. 

• As a preliminary conclusion, if we limit the duty cycle slew rate or simply truncate the available loop 
bandwidth, we have a means to fight the control-to-output RHPZ inherent to the CCM boost converter. 

 
Now that we have physically observed the potential instability, let us try to develop a small-signal model. 
 
Small signal study 
 
 Equation 1 represents a non-linear large signal expression. To deal with a small-signal ac equation in 
which poles and zeros could appear, we need to apply a linearization process around an operating point. There 
are two ways to do it: 
 

1. Perturb all dc terms with a small ac modulation. That is to say, replace all terms susceptible to change 
by a static value plus an ac modulation: 

 

  ( ) ( )( )ˆˆ ˆ 1out out L LI i I i D d+ = + − +  (11) 

 
  ˆ ˆˆ ˆ ˆ ˆ

out out L L L L L LI i I dI DI i di Di+ = − − + − −  (12) 
 

• Collect and sort dc terms and ac terms to form two different equations. Get rid of the ac cross products 
as they are of negligible contribution (small by small leads to a smaller result): 

 
  ( )1out L L LI I DI I D= − = −  (13) 
 
  ( ) ˆˆ ˆ 1out L Li i D dI= − −  (14) 
 

• We now have a dc equation which gives us the bias point of our boost converter. The ac equation is the 
small-signal response of the output current to a perturbation in the inductor current and the duty cycle. 
This is the equation we are looking for. 

 
2. The second method deals with partial derivative. In some cases, the individual variable perturbations 

can lead to complicated expressions where the final sort of dc and ac equations represents a tedious 
exercise. When the bias point is already known, it is faster to use partial derivatives. A partial derivative 
actually evaluates the sensitivity of a function to its individual variables. The result is then the ac 
equation we are looking for, without dc terms and without neglecting ac cross products.  

 
• Applying the method to Eq. 1, we have: 

  

  ( )ˆ ˆˆ ˆ ˆ 1
L

out out
out L L L

IL D

I Ii i d i D dI
I D

⎛ ⎞∂ ∂⎛ ⎞= + = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (15) 

  
In Eqs. (14) or (15), the ac inductor current L̂i  appears. What is the expression of an ac inductor current? Simply 
the ac inductor voltage divided by the inductor impedance. Let us find the expression of the ac inductor voltage 
by first deriving its average large signal expression, what we already did with Eq. (4). On average, when the 
converter is at the equilibrium, this equation gives zero. However, under an ac excitation, the average inductor 
voltage is also ac modulated across zero. By using the partial derivative option, we can see that the ac inductor 
voltage, in this case, is expressed by: 
 



  ( ) ˆˆ ˆ 1L out outv v D dV= − +  (16) 
 
From Eq. (4), we can see that the input term Vin has disappeared since the input voltage is considered constant 
during the ac analysis. Furthermore, if we consider a large output capacitor, its impedance at the ac excitation 
can be considered close to zero, helping to further simplify the expression to: 
 
  ˆˆL outv dV≈  (17) 
 
Having the ac inductor voltage, it is easy to obtain the ac inductor current we are looking for: 
 

  ( ) ( ) ( )ˆˆˆ L out
L

L

v s d s V
i s

Z sL
= =  (18) 

 
Substituting Eq. (18) into Eq. (15) gives the final ac output current expression: 
 

  ( ) ( ) ( ) ( )
ˆ

ˆˆ 1out
out L

d s V
i s D d s I

sL
= − −  (19) 

 
The average inductor current IL is the source current Iin. Considering a 100% efficiency power conversion, we 
can write: 
 

  
2

out
in in out out

VV I V I
R

= =  (20) 

 
From which we have: 
 

  
( )

2

1
out out out out

in L
in load in load load

V V V VI I
V R V R D R

= = = =
−

 (21) 

 
Substituting Eqs. (21) into Eq. (19), we obtain: 
 

  
( )
( )

ˆ '
ˆ '

out out out

load

i s V D V
sL D Rd s

= −  (22) 

 
Now factoring the first term and re-arranging, we have: 
 

  
( )
( )

2

2

0

1
ˆ ' 1ˆ '

zout out

load

s
i s V D sL

ssL D Rd s

ω

ω

⎛ ⎞
−⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠= − =⎜ ⎟

⎝ ⎠
 (23) 

 
where: 
 

  0
'outV D

L
ω =  (24)  

 

  
2

2'load
z

R D
L

ω =  (25) 

 



From the above expression, we can see a pole at the origin given by the inductor L and a zero featuring a positive 
root: this is the RHPZ 

2zω we are looking for. Please note that both depend on the duty cycle and are moving in 
relationship to the input/output conditions. 
 Applying the boost converter numerical values from our previous example, we have the following 
positions: 
 
  0 1.6f kHz=  (26)  
 
  

2
6.6zf kHz=  (27) 

 
 In the low frequency domain, for 

2zs ω<< , the ac output current is dominated by the inductor pole 

and the phase lags to −90°. The gain drops with a −1 slope until it crosses the 0-dB axis at 0ω . It then continues 
to further drop until the RHPZ kicks-in. With a LHP zero, the slope would brake from −1 to zero, as it does, but 
the phase would return to −90° when the frequency further increases. Given the negative sign in Eq. (23), the 
phase will further lag by −90°, reaching a total of −180° in higher frequencies. We can easily calculate the 
asymptotic phase limits using Eq. (23): 
 

  
( )
( )

( )
2

1 1
ˆ

arg tan tanˆ
out

z

i s s
d s ω

− −
⎡ ⎤ ⎛ ⎞

= − − ∞⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
 (28) 

 

  
( )
( )

( ) ( )1 1

0

ˆ
lim arg tan 0 tan 90ˆ

out

s

i s
d s

− −

→

⎡ ⎤
= − ∞ = − °⎢ ⎥

⎢ ⎥⎣ ⎦
 (29) 

 

  
( )
( )

( ) ( )1 1
ˆ

lim arg tan tan 90 90 180ˆ
out

s

i s
d s

− −

→∞

⎡ ⎤
= −∞ − ∞ = − °− ° = − °⎢ ⎥

⎢ ⎥⎣ ⎦
 (30) 

 
Our average model from Fig. 4 lends itself very well to plotting Eq. (23). To further check the resulting curves, 
we have entered this equation into Mathcad® and superimposed both results. As Figure 7 confirms, they are 
equivalent, showing the phase lag to −180° at high frequency. 
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Figure 7: in high frequency, the −90° phase rotation brought by the RHPZ cumulates with that from the origin 
pole, bringing the total phase rotation to −180°. 



 
 The compensation of a system featuring such RHPZ is almost impossible given the phase stress as the 
crossover frequency approaches the RHPZ position. The only solution is to reduce the bandwidth to 20-30% of 
the worse case RHPZ position where the total phase stress remains manageable. By reducing the crossover 
frequency, the resulting duty cycle slew rate stays within acceptable boundaries where the inductor current can 
always keep up with the demand. 
 
Current mode control 
 
 In current mode control, the controller does not directly drive the duty cycle but the inductor peak 
current. However, as the overall structure of the converter does not change, Eq. (15) remains the same. Since the 
duty cycle is now a consequence of the inductor peak current set point imposed by the control voltage Vc, let us 
rework Eq. (18) to extract the duty cycle as a function of the inductor current: 
 

  ( ) ( )ˆ
L̂

out

sLd s i s
V

=  (31) 

 
If now substitute the above equation in Eq. (19), we obtain: 
 

  ( ) ( )( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ1 '
'out L L L L L

out load

sL sLi s i s D I i s i D i s
V D R

= − − = −  (32) 

 
The ac inductor peak current is imposed by the control voltage across the sense resistor and follows: 
 

  
ˆˆ c

L
sense

vi
R

=  (33) 

 
If we substitute Eq. (33) in Eq. (32) and re-arrange the result, we have: 
 

  
( )
( )

2

0

ˆ ' 1
ˆ '
out

c sense load sense z

i s D sL sG
v s R D R R ω

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (34) 

 
where: 
 

  0
'

sense

DG
R

=  (35)  

 

  
2

2'load
z

R D
L

ω =  (36) 

 
Unlike the voltage-mode equation (Eq. (23)), Eq. (34) teaches us the presence of a static gain G0 independent 
from the frequency below the RHPZ location. This is the consequence of the current mode technique whose 
inner current loop removes the inductor pole present in voltage mode control. One immediate comment concerns 
the RHPZ which is still there in current mode and occupies a same location as with the voltage mode case. 
 Figure 8 depicts the same boost converter as before but now using a peak current mode controller, also 
described in Ref. [1]. This new average mode is capable of modelling sub-harmonic instabilities and can toggle 
between DCM and CCM modes. The control voltage is adjusted to deliver 24 V and it corresponds to a similar 
duty cycle as before: 58.3%. Applying the boost converter numerical values, the static gain G0 reaches −7.6 dB. 
Again, we have entered Eq. (34) in Mathcad and the resulting calculations are plotted in Figure 9 together with 
the SPICE-simulated waveforms. The agreement is fairly good until the sub-harmonic poles kick-in at half the 
switching frequency and further degrades the phase response. 
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Figure 8: the voltage mode model is now replaced by the current mode sub circuit. 
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Figure 9: the resulting ac SPICE simulation shows the peaking brought by the sub-harmonic poles. Here, the 
ramp compensation level is 50% of the inductor current downslope. 

 
 Reference [2] offers another interesting way to evaluate the RHPZ position in a boost converter. Using 
the high-frequency small-signal response of the converter, the author calculates the temporal response of the 

( )
( )

ˆ
ˆ
outv s
d s

transfer function to a duty cycle transient step. In a separate paragraph, he graphically calculates the 



output voltage variation related to the average output current change engendered by a similar abrupt duty cycle 
change. As both voltages should be equal, the RHPZ is further unveiled in a unique way. 
 Reference [3] also documents the RHPZ aspects and is worthwhile to consult. 
 
Conclusion 
 
 Converters implementing an indirect energy transfer type of conversion suffer from the presence of a 
right-half-plane zero when operated in CCM. These converters must first store the energy in the inductor during 
a certain time before dumping it into the output capacitor during the rest of  the cycle. If the duty cycle quickly 
changes in response to a perturbation, the inductor naturally limits the current slew rate and the output voltage 
drops. A way to limit the vicious effects of the RHPZ is to limit the available loop bandwidth to 20-30% of the 
worse case RHPZ position. That way, the duty cycle slew rate is limited and remains always slower than the 
minimum inductor slew rate. The calculations show that the RHPZ exists in CCM fixed-frequency voltage mode 
and current mode techniques, occupying a similar position. In a next article, we will show how to compensate a 
converter featuring a RHPZ with the help of SPICE models. 
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