SPICE
Welcome

[left.htm]

Last modified: March 2014

APEC 2014 is now over and I posted the seminar in a link below. The presentation went well, the audience peaked to 150 people and interaction has been excellent with numerous questions. Thank you all for kindly attending my lecture and I look forward to seeing you again in Charlotte!

I have finished updating the new edition of the 2008 book. I expanded most of the chapters. You will find more small-signal modeling and an entire section is dedicated to the over power phenomenon in the flyback converter. I have detailed rms calculations for the basic topologies, for CCM and DCM. As usual, all formulas are detailed and you can follow the steps. Files have been sent to McGraw-Hill for a product release around May/June 2014. Hope you'll like it!

Designing Control Loops for Linear and Switching Power Supplies: a Tutorial Guide is now available for sale. This new book took me three years of work, every night. It first started in 2009, I wanted to write an exhaustive text on how to design compensators for power supplies. Operational amplifiers (op amps) were first on the list, but I then realized that there was many other types of active elements that could be used to perform this function: TL431, operational transconductance amplifiers (OTA) and shunt regulators like in the TOPSwitch (Power Integrations) series. If literature abounds on op amps, there are few documents on TL431, OTAs and TOPSwitches, but all scattered in application notes sometimes difficult to find. I have dedicated an entire chapter for each of them, even detailing TL431 internals. Of course, there are non-isolated and isolated versions with an optocoupler.

Please check the announcement in different languages (English, French, German, Japanese, Mandarin, Simplified Chinese, Korean and Spanish). Thanks to all my friends world-wide for their kind help! (Bernie, Werner, Ken-san, Kelvin, Patrick, W.S. and Juanito)

 

You can download the Table of Content here.

The book starts to explain loop control theory in a very basic approach, "with the hands" as we say in French : ) Then, the following chapters go deeper into the theory you need to know as a power supply engineer. There is some mathematical content but there are a lot of examples that show how to put the theory at work. This is a strength of the book to my opinion: it bridges theory that you have learned at school with what you will face in your engineering challenges. For instance, we all learned how to build a compensator with an op amp (I still have my class documents) but how do you apply that knowledge to a TL431, a Transconductance Amplifier or a Shunt Regulator? And what if you add an optocoupler? Throughout the pages, you will learn where phase margin comes from, how to select crossover frequency, how to efficiently compensate a control system and much more! I hope you will enjoy this new work that took me 3 years to write. As usual, almost all the equations were derived by myself with all the steps so that you can follow...and correct me if I am wrong!

Chapter 1: this chapter is an incomplete introduction to control systems. I have tried to gather the very basic things you need to know about control systems and I introduced some of the tools you will need in the following chapters. This chapter is for people who have no notion of control systems at all and want to understand how such a system works. No complex diagrams or difficult equations, a step-by-step introduction. Of course, experts reading this chapter will smile but, again, this brief introduction is not for them, they can jump to chapter 2 immediately : ) Please note that the entire Chapter 1 is offered for download by Artech on its website.

Chapter 2: now we start the discussion about serious stuff. I am showing how to properly write transfer functions. You will discover that a transfer function can be derived in different ways. One of them uses brute-force algebra. The result is analytically correct but when you look at the result, it is almost impossible to say if there is gain, if there are poles and zeros and where they are hide. Re-write the same function the proper way and all these information clearly appear in the equation. Knowing how to write transfer functions this way is the key to fast analytical techniques and so-called low-entropy expressions. Learn how to get the poles and zeros just by looking at the electrical schematic!

Chapter 3: in this chapter, I explain where phase and gain margins come from. At school, I was told that "you need to have at least 45° of phase margin at crossover" and that was it! I never had a clue where this number was coming from and how to apply it. Learn how phase margin is linked to the quality factor of a second-order system. Check how to read these data on Bode but also on Nyquist plots. Learn what modulus and delay margins are. Understand the importance of output impedance and the way to shape it via the right crossover frequency.

Chapter 4: we now enter the world of compensation: how to shape the return path so that my control system be stable, fast and precise. PID configuration are explored and I reveal the link between coefficients and poles/zeros placement. Nothing new here, but this is done step by step so that you can follow the path. A few examples put the PID at work and show that in some cases where Bode says it will be stable, the system isn't. Learn why and how to properly compensate your product.

Chapter 5: this chapter covers compensators using operational amplifiers. You will find type 1, 2 and 3 structures, with and without optocouplers. You have all the equations, ready to use. I even re-wrote the k factor equations for those interested in the approach. All derivations steps are detailed and commented.

Chapter 6: transconductance amplifiers (OTAs) are popular among the IC designers community. They are easy to design and require less die area than they op amp cousins. However, the set of equations you have for op amps does not readily apply. I have re-derived all the design equations in this chapter. Even if you add an optocoupler, it is covered. Also, I explain why it is difficult to build a type 3 with an OTA and what are its limitations.

Chapter 7: the TL431 is the most popular elements found in todays power converters. Hosting a precise reference voltage and an open-collector op amp, it is a remarkably well-crafted device. Actually, op amp and reference make only one and the transistors arrangement was made by a genius designer! Check TL431 internals and learn how to use that component to build type 1, 2 and 3 compensators with an optocoupler.

Chapter 8: TOPSwitches from Power Integrations are very popular high-voltage switchers. Rather than hosting a voltage control input, these devices are sensitive to injected current as a means to control the duty ratio. Again, previous equations no longer fit and I have reworked them all for the classical compensator types.

Chapter 9: bench measurements are mandatory when you deal with control systems. It is important to verify that all hypothesis you made during the design phase lead to the expected phase and gain margins on the real prototype. And a prototype is a real piece of hardware, not a Simplis simulation bench, please! In this chapter, I explain the theory behind closed-loop measurements and where to be careful for reliable measurements. Then follow 5 design examples, putting theory at work.

Simulation files:

There is no CDROM with that book but there are available simulation files that correspond to some of the book examples. These examples are simulated with Intusoft IsSpice and their demonstration version will certainly run a few of them. Didier Balocco was kind enough to translate some of these examples in LTSpice. These are beta versions. If you have the time to translate the remaining examples, I will be glad to post them in this webpage.

Feedback

Yes, I know it for fact, there will be errors and typos in the 1500 equations I derived in this book. The term derived is correct because I really worked almost all these equations myself. First, because doing so let me identify obstacles that I could teach you how to avoid when following my steps. Second, copy/pasting equations or pulling them out of thin air is not my writing style as an engineer. I apologize in advance if you find errors, mistakes or typos in these mathematical expressions. Given their number and the care put in chasing them, this is unavoidable. Please, let me know where these errors are and I will maintain an errata list (here), giving credits to people who found these mistakes. Merci d'avance ! (Thanks in advance).

The book distributors:

Amazon (France)    Amazon (US)   Wallmart (US)  Amazon (Canada)    Amazon (Japan)    Amazon (Germany)   Amazon (UK)    Barnes & Noble  

Amazon (China)

---------------------------------

If you want to read my interview by EEWeb, please follow this link. I'm sure some of you will recognize the guy in the wall poster : )

---------------------------------

Switch-Mode Power Supplies: SPICE Simulations and Practical Designs was released in 2008. Another book on power electronics you say? Not really. In the technical literature, you either have books that are purely academicals and offer in-depth analysis of converters, unfortunately without the essential links to the market reality. You also have purely practical books that pull equations out of thin air without any theoretical grounds. This book bridges both approaches and will hopefully please the power electronics student and the design engineer, both looking for analytical explanations but also for practical solutions when facing customer demands. This book is really about power supplies designs, with SPICE as a design companion. It covers dc-dc but also ac-dc converters. By the way, the ac-dc conversion in offline converters is made by the diodes bridge and the capacitor, the downstream converter is always a dc-dc, isn't it?

Press release for the book announcement in French, English, German, Mandarin and Japanese!!

(Xiè-xie to Patrick Wang and arigatô gozaimasu to Iguchi-san!)

        

The book is now available in simplified Chinese and Korean. Thank you to Mr Zhangde Lu who translated the whole book in a record time! Mr Lu is a  teacher in Shaoxing university in China. The book is available from Publishing House China and Chinese links are posted below.

The book is organized in eight chapters covering the following subjects:

Chapter 1: this chapter starts with the basics of dc-dc conversion, step by step with linear regulators used to derive essential formulas such as closed-loop impedances or closed-loop input rejection. Then the classical buck, boost, buck-boost are analyzed in CCM/DCM and critical modes until an input filter is added. There, you will discover the effects of the filter insertion and learn how to compensate the converter while still attenuating the input noise (95 pages).

Chapter 2: small-signal modeling is really an important topic if you want to be serious about power supply designs. The chapter starts by showing what State Space Averaging is all about and how complicated it can be. Then, the PWM switch model is introduced and three new versions are derived: auto-toggling DCM/CCM voltage-mode and current-mode models, with sub harmonic prediction in CCM for the later. Of course, these models are large-signal ones and operate in dc, ac and transient analysis. Finally, a borderline model is derived, later used in PFC stages. This 100-page chapter really explains how these models were derived and how to use them for your studies (146 pages).

Chapter 3: loop control is always hard to understand for some new comers. I've strived to make things look simple, explaining how the k factor was derived and showing that, sometimes, it is not a panacea. I propose different equations to let you manually select the poles and zeros, crossing over at the exact desired frequency. Also, in most of the books, only op amps are used to illustrate compensation. In this book, I derived the transfer functions of TL431-based type 2 and 3 compensators and I showed how the optocoupler pole can affect the phase margin (100 pages).

Chapter 4: this is where you will learn how to build your basic subcircuit blocks and how to construct your new models, if necessary. For instance, how to model the error amp of the UC384X family. Understand the differences between syntaxes and learn how to write in-line equations. A section specifically details the derivation of a magnetic model, based on non-linear junctions. See how to wire generic PWM models in various configurations for the best simulation speed. Learn how to extract physical data from a transformer to later pass them to a subcircuit (66 pages).

Chapter 5: in this chapter, we cover the design of dc-dc converters, the classical structures, in both voltage-mode and current mode configurations. There are small-signal analysis and transient studies in all cases The front-end filter section is also analyzed with input ripple specification targets (84 pages).

Chapter 6: rectifying the sinusoidal mains is a section common to all ac-dc converters. After all, the diode bridge and the capacitor are the elements that really perform the ac to dc conversion. The downstream converter is still a dc-dc, no? This chapter covers the classical diode bridge configuration then further introduces passive power factor correction, quickly followed by active power factor correction. The most popular topologies are covered and there are several design examples. An extensive usage of the average models is made here, leading to extremely short simulation times (88 pages).

Chapter 7: it is time to describe the isolated buck-boost also called the flyback converter. This chapter covers a lot of techniques pertinent to the flyback converter, what is the leakage inductor role, how it affects the drain voltage excursion and how you can use its presence in active clamp versions etc. The design section contains useful tricks to limit the converter power capability at high line for instance or to compensate the leakage spike on the auxiliary winding. There are three design examples, among which a multi-output borderline converter using the new BCM average model, also described in the book (160 pages).

Chapter 8: the forward converter is widely used in ATX power supplies (the so-called silver box) where the 2-switch configuration excels in 250 to 400-W applications. The chapter explores the various reset methods and introduces you to multi-output configurations through mag amps, or synchronous rectifiers. A complete design example is proposed at the end of the book (129 pages).

CDROM: the CDROM found with the book contains some of the most popular demonstration versions of currently available simulation softwares. I strived to give away almost all the examples of the book in OrCAD/PSpice and ICAPS/IsSpice formats. Some of the distributed versions also feature examples kindly translated by the software editors themselves. This is the case for uCap, TINA, Multisim, B2 Spice, 5Spice. Other demos include Power 4-5-6, Transim and TopSpice. I updated the Excel file dedicated to the k-factor to which TL431-based configurations have been added.

Download the Table Of Content

Distributed libraries:

I purposely created specific application circuits that are not given away with the book. The library I am separately distributing includes the UC384X (UC3842/UC3843/UC3844/UC3845 SPICE models)  precisely modeled and implemented in a lot of application examples. The same applies for Power Factor Correction circuits, ready to go on several platforms. The library and application circuits are available in different formats that are Micro Cap, TINA, OrCAD and IsSpice. You can download an application listing to check what is inside these libraries - also available for TINA and  Micro Cap - OrCAD or IsSpice. Please drop me a line to my address: cbasso@wanadoo.fr ("SPICE library" as the subject ) to learn about this package and how to get it. I am currently setting up a distribution network for these files.

I also have participated to the development of a more comprehensive library file with AEi Systems. There are currently more than 200 PWM IC models in this file and you can obtain a detailed quotation and information via this link.

So what?

Yes, I know, there is place for more and there are subjects that I did not cover. However, this last book took me three years to finish and I felt I was writing a new never ending story... : ) I therefore kept interesting stuff for a next edition, in a few years from now. For instance, I will show where the phase margin value come from and how to analytically link the crossover frequency and the phase margin to the converter output impedance.

Feedback

Please, forgive me in advance in case you find errors, mistakes or typos, despite all the efforts in trapping them, there might still be some left, even further to thorough corrections ran by numerous reviewers. I will maintain a list of collected remarks, with credits to authors that have found them! The file will regularly be updated. Also, if you liked the book, please drop me a line and I will post some comments there or fill up the forms on the vendor sites. Merci in advance! The corrections file for the first edition is here, compiling all errors and mistakes previously published.

Reviews

The US IEEE Power Electronic Society has reviewed my book and published its comments in the PELS April newsletter.

An article has been published in Power Electronics Designs, written by Dr. Ray Ridley and published in the April 08 issue.

A review from Design/Analysis Consultants, Inc. where the book is recommended!

An excerpt has been published online in Power Management Design line.

The book appears in the "Best Power Supply Design Books" directory in SMPSTech webpage

Dr. Yan-Fei Liu from Queen's University (Canada) published a review in the Canadian section of IEEE.

The book was one of the best sales for technical books at ISSCC Conference 2009. Read this excerpt.

The book has been reviewed by Dennis Feucht in the EN Genius Network site. You can find the link here.

The book distributors:

Amazon (France)    Amazon (US)    Amazon (Canada)    Amazon (Japan)    Amazon (Germany)   Amazon (UK)    Barnes & Noble  

DangDang (China)    Amazon (China)  Infibeam (India) FriendsOfBooks (India)  Fishpond (New-Zealand)    Fishpond (Australia)   

There are several reviews you can read in the Amazon US website to learn about the book acceptance by engineers.

SPICE sites and power supply sites:

YouSPICE : a community for electronic design and simulation.

EE Web : an electronics forum where technical people answer technical questions.

PowerEsim : if you want to design your power supply online, this is the link to follow.

How2Power : a site maintained by David Morrison, former PET editor, which deals with power electronics

Vatche Vorperian Consulting : the consulting site of Monsieur Vorpérian himself!

Ridley Engineering: Dr Ridley's website where a lot of useful tips and tricks are available to designers

About SPICE.com: a site dedicated to SPICE users worldwide with news etc.

LTSpice group users: the user group of Linear Technology free SPICE simulator, LTSpice

AEi Systems: a consulting engineering firm on SPICE modeling and worse case analysis

Design/Analysis Consultants: a consulting firm specialized in worst-case analysis and design robustness

Presentations and papers to download

APEC 2014, 3-hour professional seminar held in Fort Worth, TX, C. Basso: this presentation shows the PWM switch models at work in various converter structures. Fixed switching frequency in voltage and current mode is described but borderline conduction mode is also demonstrated. This presentation also introduces the small-signal model of the active clamp forward converter operated in voltage mode control. The model is then compared to bench measurements. The audience peaked to 150 people during the show, thank you all for attending!

 

Presentation skills, C. Basso: I have been teaching and speaking in front of an audience for a while now. My first speech, which goes back 20 years, was a complete disaster: trembling voice, shaky legs and so on. I made the obvious mistakes untrained people do and with time, I started to improve by learning from professionals. I also took several presentation skills classes (Decker training was excellent) and I improved over years. At least I hope I did : ) For those who need to present, I compiled most the mistakes you must avoid to make your speech efficient and credible. I have one in French as well.

Small-signal analysis of the fixed current mode variable frequency flyback converter, C. Basso: this presentation teaches you how to derive the transfer function of a flyback converter operated in constant peak current while switching frequency is controlled. This technique is now widely used in converters implementing frequency foldback in light-load conditions.

APEC 2013, 3-hour professional seminar held in Long Beach, CA, C. Basso: this presentation teaches step by step how to derive large and small-signal models of switching converters. The presentation starts by showing how to linearize non-linear equations and then describes models for voltage-mode and current-mode CCM/DCM converters. It extensively makes usage of the PWM switch model. A model of a QR flyback model is also presented. Merci to my friend Chris Warin for kindly taking the below pictures!

Introduction by Mrs Chen, chairman of the conference    Agenda of what I am about to present                                    There we go, the audience peaked to 200 people which is very rewarding, thank you all!

Genuine type 2 compensator with the TL431, C. Basso: this short document shows you that a real type 2 built with a TL431 and involving two lanes is not wired as a type 2 with an op amp: a single capacitor is enough across the TL431. Adding an extra RC is useless.

APEC 2012, 3-hour professional seminar held in Orlando, FL, C. Basso: this presentation teaches you some less known aspects of loop control theory applied to switching and linear converters. Things like delay margins, modulus margin or how a PID converts to a type 3 compensator. They were in this new seminar entitled "The Dark Side of Loop Control Theory".

This is me, together with Franki Poon from the PowerEsim website!

APEC 2011, 3-hour professional seminar held in Fort Worth, TX, C. Basso: this presentation teaches you the untaught aspects of the flyback converter. Things like Over Power Protection (OPP) or Quasi-Resonant small-signal compensation are rarely included in seminars. They were in this one, entitled "The Dark Side of Flyback Converters".

   

These are the covered subjects in the 3-hour time. The RHPZ presence in both CCM and DCM was explained to the students.

Calculating the bulk capacitor parameters in an offline converter, C. Basso: this paper updates the current book content by improving the formulas used to derive the bulk capacitor value in a front-end rectifying section. Nothing spectacular here but I realized that these results could help the design community to calculate the right value.

APEC 2010, 3-hour professional seminar held in Palm Springs, CA, C. Basso: this presentation teaches you how to design compensators based on TL431, op amps or OTAs. This seminar associated with that of 2009 represent the subject of my new book on loop control.

This is me, teaching how to derive the full analysis equations for a type 2 compensator with an op amp. There were more than 100 students in the room.

An average model for the phase shifted converter, C. Basso: this document shows how I built an auto-toggling average model for the phase shifted converter. The model exists in IsSpice but also in PSpice. Both average and generic cycle-by-cycle models are available in ready-to-use templates describing a 12-V/25-A power converter. They are part of the distributed library files.

APEC 2009, 3-hour professional seminar held in Washington DC, C. Basso: this presentation teaches you where phase margin and crossover frequency come from and guides through the stabilization process of a dc-dc converter.

I am on the left, on the ON Semiconductor booth at APEC 2009. The other fellow is my friend Larry Jenck.

Dealing with low-current optocouplers, C. Basso: this is an article I wrote in 2009 that describes how an optocoupler works and why you should always characterize its inherent pole. A method is offered to extract it quickly through a simple test fixture.

The TL431 in loop control, C. Basso: the TL431 is never studied as a part of the compensator in control theory  books.  However, this is a market reality, op amps are rarely used! Go through this new series of articles and learn how the TL431 works and how you can use it in a variety of configurations.

Selecting the cross-over frequency in relationship to the converter output impedance, C. Basso: this paper teaches how the cross-over frequency affects the output impedance of the converter you want to stabilize.

The link between the open-loop phase margin and the closed-loop quality coefficient , C. Basso: this paper explains the relationship between the open-loop phase margin you select and the resulting transient response you can obtain.

The PWM switch operated in Borderline Conduction, current-mode, C. Basso: this paper shows how to get the small-signal model of a flyback converter operated in the so-called quasi-resonant mode.

The RHPZ, a two-way control path, C. Basso: the Right-Half-Plane-Zero plagues the flyback or the boost converters operated in CCM. This paper explores the origins of the RHPZ.

Stability Analysis in multiple loop systems, S. Conseil, N. Cyr, C. Basso: a TL431 combines a fast and a slow lane. How to measure the total loop gain combining both lanes is the object of this paper.

"The PWM switch in transitioning models": this document was presented in PCIM 2005 and covers the history of SPICE models.

"The PWM switch concept...", PCIM 2005: this is the paper published in the PCIM proceedings.

"Quasi-Resonant SPICE model eases loop design", PCIM 2003: this model uses CoPEC approach to model a QR controller. There are two associated models, in PSpice and IsSpice.

"the forward converter small-signal gains": a short PowerPoint which shows how my new models match calculations in both VM and CM for a forward converter.

New models to download

TL431 models discussion: an interesting discussion on the TL431 and the performance of several available models.

New LTSpice models: Didier Balocco has come up with a new series of LTSpice sub-circuits implementing the PWM Switch model in voltage and current modes. There are plenty of examples plus a quick installation guide. The files are here. Merci Didier !

LTSpice models: Charles Denton has been kind enough to translate the PWM switch models in LTSpice. Yes, it is obvious, you need a good book to understand how to use them... ;-)

VerilogA models: the PWM switch model working in VerilogA, nicely translated by Nico Cyr from ON Semi.

VerilogA models: the PWM switch model working in VerilogA, a new model contributed by Rainer Krenzke from Dialog Semiconductor.

Flyback current-mode automated calculation spreadsheet: this is a new automated software which calculates the TL431 elements to stabilize of a flyback converter operated in peak current mode control. The software includes mode transition, sub harmonic poles and optocoupler pole contribution. Check it out!

Switch Mode Power Supply Cookbook - download files

bullet

Ben-Yaakov models are based on the Switched Inductor Model (SIM) concept as described by many publications at: http://www.ee.bgu.ac.il/~pel. The models offered are averaged models adapted in a .SUBCKT form and let you simulate the following topologies: BUCK, BOOST, BUCK-BOOST/FLYBACK, FORWARD, SEPIC in both Current-Mode (CM) and Voltage-Mode (VM) versions. As averaged models, they find their dc point alone and allow AC and TRANsient simulations. Please note that CM models do not predict subharmonic oscillations at Fsw/2 (PSpice, IsSpice).

bullet

Ridley models are ac models only (PSpice, IsSpice). They can't compute their dc point alone and are therefore dedicated to ac simulation only. They correspond to an adaptation of original SPICE2 scripts where complex parameters needed to be calculated by the user. These models naturally shield you against these drawbacks and let you simulate the same topologies as above in a snap-shot. They nicely predict Fsw/2 oscillations. More information on Ridley models and interesting stuff can be found at: http://www.ridleyengineering.com/index.html

bullet

Sam Ben-Yaakov presented during PCIM 2001 some extensions to his original GSIM models. These new models now include various losses such as inductor ohmic losses, switch RDS(on), diode forward drop and dynamic resistance. These devices have been encapsulated into working subcircuits (current-mode and voltage-mode) and are available for both IsSpice4 and PSpice.

bullet

Robert Erickson and Dragan Maksimovic, from CoPEC,  have included a simulation portion in the latest edition of their book, "Fundamentals of Power Electronics". These models were first presented during PESC 1999. I have adapted CCM-DCM1 and CCM-DCM2 to IsSpice4 because original versions were only PSpice compatible. The library contains the above models and a few zipped ready-to-use examples can be downloaded in ICAP/4  8.1 version (Flyback, Buck and Boost in voltage-mode only).

SPICE editors links

Intusoft - OrCAD - TINA - PSIM - Simplis - Multisim - MicroCap - TopSpice - 5Spice - Beigebag - NL5

Power Electronics links with papers to download

ON Semiconductor

Fairchild Semi application notes

Texas-Instruments / Unitrode Seminars 

Texas-Instruments / Unitrode Seminars another link

Texas-Instruments / Unitrode - Magnetic Handbook

Delta Electronics Triangle Park

Colorado Edu.

Ben-Gurion University

Rompower

Ivo Barbi website

Dr Middlebrook documents related to his Design-Oriented Analysis course

Queens Power Group Publications

Padova University, G. Spiazzi

My previous books

bullet

My first book, "Le Bus IEEE-488 : principes et mise en oeuvre" is written in French and  was dedicated to the IEEE-488 bus, an electrical bus that hooks instruments to an acquisition system, e.g. a PC workstation etc. The book describes the philosophy that lead Hewlett-Packard to originally develop this bus, and includes the description of various PC interfaces, including HP, National-Instruments, IOTech etc. Software examples let you quickly start developing your own acquisition programs.

bullet

My second book, "Switch Mode Power Supply SPICE Cookbook" was released in 2001 and is now out of print. McGraw-Hill has released an ebook version that you can still check on Amazon.

 

 

 you are visitor number: