The PWM switch model introduced by Vatché Vorpérian in 1986 describes a way to model a voltage-mode switching converter with the VM-PWM switch model. The large-signal model is equivalent to a dc transformer whose turns ratio is D, the controlled duty ratio. Later, in 1990, Vatché published another model, the CM-PWM switch model, targeting peak current mode controlled converters. The model nicely predicts subharmonic oscillations and works in large-signal conditions: it can compute its bias point and it works in transient analysis. This current mode model was preceded by that developed by Ray Ridley using sampled data analysis. Ridley’s model predicts the same dynamic response than what the CM-PWM switch does, but it only works in ac and cannot compute its bias point. The CM-PWM switch is sometimes prone to convergence problems and Vatché published a revised netlist in his 2004 book Fast Analytical Techniques for Electrical and Electronic Circuits. The fix is to add a coefficient in front of the two sources setting the peak and average values. It appears below:

![Diagram]
For some designers, the CC-PWM switch was troublesome given its difficulty – in some cases – to converge. The VM-PWM switch model is more robust and converges well. Ridley used the small-signal version of this VM-PWM switch to which he added a pair of RHP zeros to represent the sampling action in the current loop.

This extra circuit uses a negative resistance value to produce a negative quality factor and thus RHP zeroes.

Rather than implementing a complex circuitry, the idea here is to reuse the classical VM-PWM switch and by adding a simple extra dummy source plus a capacitor, simulate the response of a current mode converter subject to subharmonic oscillations.

Christophe Basso – June 2017
The implementation is very simple. Build a clamped source driving the duty ratio input of the PWM switch model. It is a voltage source clamped between 10 mV and 999 mV (1 to 99% duty ratio).

\[
\frac{(V(Vc)-I(VIC)*\{Ri\})*\{Fsw\}}{(\{Se\}+\{Ri\}*(V(a,c)+1u)/(2*\{L\}))} > 0.99 \text{ ? } 0.99 : \\
+\frac{(V(Vc)-I(VIC)*\{Ri\})*\{Fsw\}}{(\{Se\}+\{Ri\}*(V(a,c)+1u)/(2*\{L\}))} < 10m \text{ ? } 10m : \\
+\frac{(V(Vc)-I(VIC)*\{Ri\})*\{Fsw\}}{(\{Se\}+\{Ri\}*(V(a,c)+1u)/(2*\{L\}))}
\]

It is actually the equation described in the book *Switch-Mode Power Supplies: Spice Simulations and Practical Designs* sec. ed. on page 199. Add a dummy voltage source in series with the c terminal that you call VIC plus a resonating capacitor between terminals c and p. The capacitor value is classically

\[Cs=1/(L*(Fsw*3.14)^2)\]

The control voltage \(V_c\) is transformed into a duty ratio via the in-line equation to generate the correct duty ratio \(D\). The following slide shows the final implementation around the VM-PWM switch model. This is a CCM simulation only here and I am not sure it would be easy to have the D generator toggle into a DCM expression easily.
This is a CCM current mode boost converter built around the voltage mode PWM switch model to which a duty ratio generator has been added, together with a resonating capacitor.
This is the CCM current mode boost converter built around the original CM-PWM switch purposely thought to model current mode control power supplies. It only uses current sources. As you can see from the schematic, all operating points are similar to those from the previous slide.

Christophe Basso – June 2017
The graphs are well coincident and a small deviation appears as we approach F_{sw} but it is reasonably low.
Here in LTSpice, I compared a buck converter in CM driven by the VM-PWM switch model developped by Didier to which I added the resonating cap.

Christophe Basso – June 2017
Dynamic responses from the VM-PWM switch with the added capacitor and the CM-PWM switch model. $F_{sw} = 100$ kHz.
A buck-boost converter with the two different models. Dc points are identical.

Christophe Basso – June 2017
Dynamic responses from the VM-PWM switch with the added capacitor and the CM-PWM switch model. $F_{sw} = 100$ kHz.
A boost converter with the two different models. Dc points are identical.

Christophe Basso – June 2017
Dynamic responses from the VM-PWM switch with the added capacitor and the CM-PWM switch model. $F_{sw} = 300$ kHz.

Special thanks to Marc Dimattina for helping me on this approach and of course to Didier Balocco for porting my models to LTSpice.

Christophe Basso – June 2017